Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Sci Rep ; 14(1): 6086, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480847

RESUMO

Research on different machine learning (ML) has become incredibly popular during the past few decades. However, for some researchers not familiar with statistics, it might be difficult to understand how to evaluate the performance of ML models and compare them with each other. Here, we introduce the most common evaluation metrics used for the typical supervised ML tasks including binary, multi-class, and multi-label classification, regression, image segmentation, object detection, and information retrieval. We explain how to choose a suitable statistical test for comparing models, how to obtain enough values of the metric for testing, and how to perform the test and interpret its results. We also present a few practical examples about comparing convolutional neural networks used to classify X-rays with different lung infections and detect cancer tumors in positron emission tomography images.


Assuntos
Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Aprendizado de Máquina Supervisionado , Tomografia por Emissão de Pósitrons
2.
Eur Heart J Cardiovasc Imaging ; 25(2): 285-292, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37774503

RESUMO

AIMS: To evaluate the incremental value of positron emission tomography (PET) myocardial perfusion imaging (MPI) over coronary computed tomography angiography (CCTA) in predicting short- and long-term outcome using machine learning (ML) approaches. METHODS AND RESULTS: A total of 2411 patients with clinically suspected coronary artery disease (CAD) underwent CCTA, out of whom 891 patients were admitted to downstream PET MPI for haemodynamic evaluation of obstructive coronary stenosis. Two sets of Extreme Gradient Boosting (XGBoost) ML models were trained, one with all the clinical and imaging variables (including PET) and the other with only clinical and CCTA-based variables. Difference in the performance of the two sets was analysed by means of area under the receiver operating characteristic curve (AUC). After the removal of incomplete data entries, 2284 patients remained for further analysis. During the 8-year follow-up, 210 adverse events occurred including 59 myocardial infarctions, 35 unstable angina pectoris, and 116 deaths. The PET MPI data improved the outcome prediction over CCTA during the first 4 years of the observation time and the highest AUC was at the observation time of Year 1 (0.82, 95% confidence interval 0.804-0.827). After that, there was no significant incremental prognostic value by PET MPI. CONCLUSION: PET MPI variables improve the prediction of adverse events beyond CCTA imaging alone for the first 4 years of follow-up. This illustrates the complementary nature of anatomic and functional information in predicting the outcome of patients with suspected CAD.


Assuntos
Doença da Artéria Coronariana , Imagem de Perfusão do Miocárdio , Humanos , Angiografia por Tomografia Computadorizada/métodos , Prognóstico , Angiografia Coronária/métodos , Imagem de Perfusão do Miocárdio/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada Multidetectores/métodos , Aprendizado de Máquina , Valor Preditivo dos Testes
3.
Int J Biomed Imaging ; 2023: 3819587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089593

RESUMO

Clustering time activity curves of PET images have been used to separate clinically relevant areas of the brain or tumours. However, PET image segmentation in multiorgan level is much less studied due to the available total-body data being limited to animal studies. Now, the new PET scanners providing the opportunity to acquire total-body PET scans also from humans are becoming more common, which opens plenty of new clinically interesting opportunities. Therefore, organ-level segmentation of PET images has important applications, yet it lacks sufficient research. In this proof of concept study, we evaluate if the previously used segmentation approaches are suitable for segmenting dynamic human total-body PET images in organ level. Our focus is on general-purpose unsupervised methods that are independent of external data and can be used for all tracers, organisms, and health conditions. Additional anatomical image modalities, such as CT or MRI, are not used, but the segmentation is done purely based on the dynamic PET images. The tested methods are commonly used building blocks of the more sophisticated methods rather than final methods as such, and our goal is to evaluate if these basic tools are suited for the arising human total-body PET image segmentation. First, we excluded methods that were computationally too demanding for the large datasets from human total-body PET scanners. These criteria filtered out most of the commonly used approaches, leaving only two clustering methods, k-means and Gaussian mixture model (GMM), for further analyses. We combined k-means with two different preprocessing approaches, namely, principal component analysis (PCA) and independent component analysis (ICA). Then, we selected a suitable number of clusters using 10 images. Finally, we tested how well the usable approaches segment the remaining PET images in organ level, highlight the best approaches together with their limitations, and discuss how further research could tackle the observed shortcomings. In this study, we utilised 40 total-body [18F] fluorodeoxyglucose PET images of rats to mimic the coming large human PET images and a few actual human total-body images to ensure that our conclusions from the rat data generalise to the human data. Our results show that ICA combined with k-means has weaker performance than the other two computationally usable approaches and that certain organs are easier to segment than others. While GMM performed sufficiently, it was by far the slowest one among the tested approaches, making k-means combined with PCA the most promising candidate for further development. However, even with the best methods, the mean Jaccard index was slightly below 0.5 for the easiest tested organ and below 0.2 for the most challenging organ. Thus, we conclude that there is a lack of accurate and computationally light general-purpose segmentation method that can analyse dynamic total-body PET images.

4.
J Nucl Med ; 64(Suppl 2): 11S-19S, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37918848

RESUMO

Recently, PET systems with a long axial field of view have become the current state of the art. Total-body PET scanners enable unique possibilities for scientific research and clinical diagnostics, but this new technology also raises numerous challenges. A key advantage of total-body imaging is that having all the organs in the field of view allows studying biologic interaction of all organs simultaneously. One of the new, promising imaging techniques is total-body quantitative perfusion imaging. Currently, 15O-labeled water provides a feasible option for quantitation of tissue perfusion at the total-body level. This review summarizes the status of the methodology and the analysis and provides examples of preliminary findings on applications of quantitative parametric perfusion images for research and clinical work. We also describe the opportunities and challenges arising from moving from single-organ studies to modeling of a multisystem approach with total-body PET, and we discuss future directions for total-body imaging.


Assuntos
Imagem de Perfusão , Água , Imagem de Perfusão/métodos , Tomografia por Emissão de Pósitrons/métodos
5.
J Nucl Cardiol ; 30(6): 2750-2759, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37656345

RESUMO

BACKGROUND: Machine Learning (ML) allows integration of the numerous variables delivered by cardiac PET/CT, while traditional survival analysis can provide explainable prognostic estimates from a restricted number of input variables. We implemented a hybrid ML-and-survival analysis of multimodal PET/CT data to identify patients who developed myocardial infarction (MI) or death in long-term follow up. METHODS: Data from 739 intermediate risk patients who underwent coronary CT and selectively stress 15O-water-PET perfusion were analyzed for the occurrence of MI and all-cause mortality. Images were evaluated segmentally for atherosclerosis and absolute myocardial perfusion through 75 variables that were integrated through ML into an ML-CCTA and an ML-PET score. These scores were then modeled along with clinical variables through Cox regression. This hybridized model was compared against an expert interpretation-based and a calcium score-based model. RESULTS: Compared with expert- and calcium score-based models, the hybridized ML-survival model showed the highest performance (CI .81 vs .71 and .64). The strongest predictor for outcomes was the ML-CCTA score. CONCLUSION: Prognostic modeling of PET/CT data for the long-term occurrence of adverse events may be improved through ML imaging score integration and subsequent traditional survival analysis with clinical variables. This hybridization of methods offers an alternative to traditional survival modeling of conventional expert image scoring and interpretation.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Imagem de Perfusão do Miocárdio , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Angiografia Coronária/métodos , Cálcio , Tomografia Computadorizada por Raios X/métodos , Infarto do Miocárdio/diagnóstico por imagem , Aprendizado de Máquina , Prognóstico , Análise de Sobrevida , Imagem de Perfusão do Miocárdio/métodos
6.
Elife ; 122023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37615346

RESUMO

Background: The emergence of new SARS-CoV-2 variants with significant immune-evasiveness, the relaxation of measures for reducing the number of infections, the waning of immune protection (particularly in high-risk population groups), and the low uptake of new vaccine boosters, forecast new waves of hospitalizations and admission to intensive care units. There is an urgent need for easily implementable and clinically effective Early Warning Scores (EWSs) that can predict the risk of complications within the next 24-48 hr. Although EWSs have been used in the evaluation of COVID-19 patients, there are several clinical limitations to their use. Moreover, no models have been tested on geographically distinct populations or population groups with varying levels of immune protection. Methods: We developed and validated COVID-19 Early Warning Score (COEWS), an EWS that is automatically calculated solely from laboratory parameters that are widely available and affordable. We benchmarked COEWS against the widely used NEWS2. We also evaluated the predictive performance of vaccinated and unvaccinated patients. Results: The variables of the COEWS predictive model were selected based on their predictive coefficients and on the wide availability of these laboratory variables. The final model included complete blood count, blood glucose, and oxygen saturation features. To make COEWS more actionable in real clinical situations, we transformed the predictive coefficients of the COEWS model into individual scores for each selected feature. The global score serves as an easy-to-calculate measure indicating the risk of a patient developing the combined outcome of mechanical ventilation or death within the next 48 hr.The discrimination in the external validation cohort was 0.743 (95% confidence interval [CI]: 0.703-0.784) for the COEWS score performed with coefficients and 0.700 (95% CI: 0.654-0.745) for the COEWS performed with scores. The area under the receiver operating characteristic curve (AUROC) was similar in vaccinated and unvaccinated patients. Additionally, we observed that the AUROC of the NEWS2 was 0.677 (95% CI: 0.601-0.752) in vaccinated patients and 0.648 (95% CI: 0.608-0.689) in unvaccinated patients. Conclusions: The COEWS score predicts death or MV within the next 48 hr based on routine and widely available laboratory measurements. The extensive external validation, its high performance, its ease of use, and its positive benchmark in comparison with the widely used NEWS2 position COEWS as a new reference tool for assisting clinical decisions and improving patient care in the upcoming pandemic waves. Funding: University of Vienna.


Assuntos
COVID-19 , Escore de Alerta Precoce , Humanos , SARS-CoV-2 , Estudos Retrospectivos
7.
Sci Rep ; 13(1): 10528, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386289

RESUMO

The aim of this study was to develop a convolutional neural network (CNN) for classifying positron emission tomography (PET) images of patients with and without head and neck squamous cell carcinoma (HNSCC) and other types of head and neck cancer. A PET/magnetic resonance imaging scan with 18F-fluorodeoxyglucose (18F-FDG) was performed for 200 head and neck cancer patients, 182 of which were diagnosed with HNSCC, and the location of cancer tumors was marked to the images with a binary mask by a medical doctor. The models were trained and tested with five-fold cross-validation with the primary data set of 1990 2D images obtained by dividing the original 3D images of 178 HNSCC patients into transaxial slices and with an additional test set with 238 images from the patients with head and neck cancer other than HNSCC. A shallow and a deep CNN were built by using the U-Net architecture for classifying the data into two groups based on whether an image contains cancer or not. The impact of data augmentation on the performance of the two CNNs was also considered. According to our results, the best model for this task in terms of area under receiver operator characteristic curve (AUC) is a deep augmented model with a median AUC of 85.1%. The four models had highest sensitivity for HNSCC tumors on the root of the tongue (median sensitivities of 83.3-97.7%), in fossa piriformis (80.2-93.3%), and in the oral cavity (70.4-81.7%). Despite the fact that the models were trained with only HNSCC data, they had also very good sensitivity for detecting follicular and papillary carcinoma of thyroid gland and mucoepidermoid carcinoma of the parotid gland (91.7-100%).


Assuntos
Neoplasias de Cabeça e Pescoço , Tomografia Computadorizada por Raios X , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Fluordesoxiglucose F18 , Redes Neurais de Computação
8.
Acta Orthop ; 94: 215-223, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37140202

RESUMO

BACKGROUND AND PURPOSE: Periprosthetic joint infection (PJI) is the commonest reason for revision after total knee arthroplasty (TKA). We assessed the risk factors for revision due to PJI following TKA based on the Finnish Arthroplasty Register (FAR). PATIENTS AND METHODS: We analyzed 62,087 primary condylar TKAs registered between June 2014 and February 2020 with revision for PJI as the endpoint. Cox proportional hazards regression was used to estimate hazard ratios (HR) with 95% confidence intervals (CI) for the first PJI revision using 25 potential patient- and surgical-related risk factors as covariates. RESULTS: 484 knees were revised for the first time during the first postoperative year because of PJI. The HRs for revision due to PJI in unadjusted analysis were 0.5 (0.4-0.6) for female sex, 0.7 (0.6-1.0) for BMI 25-29, and 1.6 (1.1-2.5) for BMI > 40 compared with BMI < 25, 4.0 (1.3-12) for preoperative fracture diagnosis compared with osteoarthritis, and 0.7 (0.5-0.9) for use of an antimicrobial incise drape. In adjusted analysis the HRs were 2.2 (1.4-3.5) for ASA class III-IV compared with class I, 1.7 (1.4-2.1) for intraoperative bleeding ≥ 100 mL, 1.4 (1.2-1.8) for use of a drain, 0.7 (0.5-1.0) for short duration of operation of 45-59 minutes, and 1.7 (1.3-2.3) for long operation duration > 120 min compared with 60-89 minutes, and 1.3 (1.0-1.8) for use of general anesthesia. CONCLUSION: We found increased risk for revision due to PJI when no incise drape was used. The use of drainage also increased the risk. Specializing in performing TKA reduces operative time and thereby also the PJI rate.


Assuntos
Artrite Infecciosa , Artroplastia do Joelho , Infecções Relacionadas à Prótese , Humanos , Feminino , Artroplastia do Joelho/efeitos adversos , Finlândia/epidemiologia , Infecções Relacionadas à Prótese/epidemiologia , Infecções Relacionadas à Prótese/etiologia , Infecções Relacionadas à Prótese/cirurgia , Fatores de Risco , Joelho , Reoperação/efeitos adversos , Artrite Infecciosa/etiologia , Artrite Infecciosa/cirurgia , Estudos Retrospectivos
9.
J Med Virol ; 95(5): e28786, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37212340

RESUMO

The aim of this study was to analyze whether the coronavirus disease 2019 (COVID-19) vaccine reduces mortality in patients with moderate or severe COVID-19 disease requiring oxygen therapy. A retrospective cohort study, with data from 148 hospitals in both Spain (111 hospitals) and Argentina (37 hospitals), was conducted. We evaluated hospitalized patients for COVID-19 older than 18 years with oxygen requirements. Vaccine protection against death was assessed through a multivariable logistic regression and propensity score matching. We also performed a subgroup analysis according to vaccine type. The adjusted model was used to determine the population attributable risk. Between January 2020 and May 2022, we evaluated 21,479 COVID-19 hospitalized patients with oxygen requirements. Of these, 338 (1.5%) patients received a single dose of the COVID-19 vaccine and 379 (1.8%) were fully vaccinated. In vaccinated patients, mortality was 20.9% (95% confidence interval [CI]: 17.9-24), compared to 19.5% (95% CI: 19-20) in unvaccinated patients, resulting in a crude odds ratio (OR) of 1.07 (95% CI: 0.89-1.29; p = 0.41). However, after considering the multiple comorbidities in the vaccinated group, the adjusted OR was 0.73 (95% CI: 0.56-0.95; p = 0.02) with a population attributable risk reduction of 4.3% (95% CI: 1-5). The higher risk reduction for mortality was with messenger RNA (mRNA) BNT162b2 (Pfizer) (OR 0.37; 95% CI: 0.23-0.59; p < 0.01), ChAdOx1 nCoV-19 (AstraZeneca) (OR 0.42; 95% CI: 0.20-0.86; p = 0.02), and mRNA-1273 (Moderna) (OR 0.68; 95% CI: 0.41-1.12; p = 0.13), and lower with Gam-COVID-Vac (Sputnik) (OR 0.93; 95% CI: 0.6-1.45; p = 0.76). COVID-19 vaccines significantly reduce the probability of death in patients suffering from a moderate or severe disease (oxygen therapy).


Assuntos
COVID-19 , Vacinas , Humanos , Vacinas contra COVID-19 , Oxigênio , ChAdOx1 nCoV-19 , Vacina BNT162 , Estudos de Coortes , Estudos Retrospectivos , COVID-19/prevenção & controle , RNA Mensageiro
10.
J Digit Imaging ; 36(4): 1885-1893, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37106213

RESUMO

Carimas is a multi-purpose medical imaging data processing tool, which can be used to visualize, analyze, and model different medical images in research. Originally, it was developed only for positron emission tomography data in 2009, but the use of this software has extended to many other tomography imaging modalities, such as computed tomography and magnetic resonance imaging. Carimas is especially well-suited for analysis of three- and four-dimensional image data and creating polar maps in modeling of cardiac perfusion. This article explores various parts of Carimas, including its key features, program structure, and application possibilities.


Assuntos
Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Humanos , Tomografia por Emissão de Pósitrons/métodos , Coração , Imageamento por Ressonância Magnética/métodos , Software , Processamento de Imagem Assistida por Computador/métodos
11.
Eur Heart J Cardiovasc Imaging ; 24(9): 1201-1209, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37086269

RESUMO

AIMS: Combined anatomical and functional imaging enables detection of non-obstructive and obstructive coronary artery disease (CAD) as well as myocardial ischaemia. We evaluated sex differences in disease profile and outcomes after combined computed tomography angiography (CTA) and positron emission tomography (PET) perfusion imaging in patients with suspected obstructive CAD. METHODS AND RESULTS: We retrospectively evaluated 1948 patients (59% women) referred for coronary CTA due to suspected CAD during the years 2008-2016. Patients with a suspected obstructive lesion on coronary CTA (n = 657) underwent 15O-water PET to assess stress myocardial blood flow (MBF). During a mean follow-up of 6.8 years, 182 adverse events (all-cause death, myocardial infarction, or unstable angina) occurred. Women had more often normal coronary arteries (42% vs. 22%, P < 0.001) and less often abnormal stress MBF (9% vs. 28%, P < 0.001) than men. The annual adverse event rate was lower in women vs. men (1.2% vs. 1.7%, P = 0.02). Both in women and men, coronary calcification, non-obstructive CAD, and abnormal stress MBF were independent predictors of events. Abnormal stress MBF was associated with 5.0- and 5.6-fold adverse event rates in women and men, respectively. There was no interaction between sex and coronary calcification, non-obstructive CAD, or abnormal stress MBF in terms of predicting adverse events. CONCLUSION: Among patients evaluated for chronic chest pain, women have a lower prevalence of ischaemic CAD and a lower rate of adverse events. Combined coronary CTA and PET myocardial perfusion imaging predict outcomes equally in women and men.


Assuntos
Doença da Artéria Coronariana , Imagem de Perfusão do Miocárdio , Humanos , Feminino , Masculino , Angiografia por Tomografia Computadorizada/métodos , Prognóstico , Estudos Retrospectivos , Imagem de Perfusão do Miocárdio/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Angiografia Coronária/métodos , Valor Preditivo dos Testes
12.
Elife ; 112022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35579324

RESUMO

New SARS-CoV-2 variants, breakthrough infections, waning immunity, and sub-optimal vaccination rates account for surges of hospitalizations and deaths. There is an urgent need for clinically valuable and generalizable triage tools assisting the allocation of hospital resources, particularly in resource-limited countries. We developed and validate CODOP, a machine learning-based tool for predicting the clinical outcome of hospitalized COVID-19 patients. CODOP was trained, tested and validated with six cohorts encompassing 29223 COVID-19 patients from more than 150 hospitals in Spain, the USA and Latin America during 2020-22. CODOP uses 12 clinical parameters commonly measured at hospital admission for reaching high discriminative ability up to 9 days before clinical resolution (AUROC: 0·90-0·96), it is well calibrated, and it enables an effective dynamic risk stratification during hospitalization. Furthermore, CODOP maintains its predictive ability independently of the virus variant and the vaccination status. To reckon with the fluctuating pressure levels in hospitals during the pandemic, we offer two online CODOP calculators, suited for undertriage or overtriage scenarios, validated with a cohort of patients from 42 hospitals in three Latin American countries (78-100% sensitivity and 89-97% specificity). The performance of CODOP in heterogeneous and geographically disperse patient cohorts and the easiness of use strongly suggest its clinical utility, particularly in resource-limited countries.


While COVID-19 vaccines have saved millions of lives, new variants, waxing immunity, unequal rollout and relaxation of mitigation strategies mean that the pandemic will keep on sending shockwaves across healthcare systems. In this context, it is crucial to equip clinicians with tools to triage COVID-19 patients and forecast who will experience the worst forms of the disease. Prediction models based on artificial intelligence could help in this effort, but the task is not straightforward. Indeed, the pandemic is defined by ever-changing factors which artificial intelligence needs to cope with. To be useful in the clinic, a prediction model should make accurate prediction regardless of hospital location, viral variants or vaccination and immunity statuses. It should also be able to adapt its output to the level of resources available in a hospital at any given time. Finally, these tools need to seamlessly integrate into clinical workflows to not burden clinicians. In response, Klén et al. built CODOP, a freely available prediction algorithm that calculates the death risk of patients hospitalized with COVID-19 (https://gomezvarelalab.em.mpg.de/codop/). This model was designed based on biochemical data from routine blood analyses of COVID-19 patients. Crucially, the dataset included 30,000 individuals from 150 hospitals in Spain, the United States, Honduras, Bolivia and Argentina, sampled between March 2020 and February 2022 and carrying most of the main COVID-19 variants (from the original Wuhan version to Omicron). CODOP can predict the death or survival of hospitalized patients with high accuracy up to nine days before the clinical outcome occurs. These forecasting abilities are preserved independently of vaccination status or viral variant. The next step is to tailor the model to the current pandemic situation, which features increasing numbers of infected people as well as accumulating immune protection in the overall population. Further development will refine CODOP so that the algorithm can detect who will need hospitalisation in the next 24 hours, and who will need admission in intensive care in the next two days. Equipping primary care settings and hospitals with these tools will help to restore previous standards of health care during the upcoming waves of infections, particularly in countries with limited resources.


Assuntos
COVID-19 , SARS-CoV-2 , Hospitalização , Hospitais , Humanos , Aprendizado de Máquina , Estudos Retrospectivos
13.
BMC Med Imaging ; 22(1): 48, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35300592

RESUMO

BACKGROUND: Attenuation correction is crucial in quantitative positron emission tomography-magnetic resonance (PET-MRI) imaging. We evaluated three methods to improve the segmentation and modelling of the attenuation coefficients in the nasal sinus region. Two methods (cuboid and template method) included a MRI-CT conversion model for assigning the attenuation coefficients in the nasal sinus region, whereas one used fixed attenuation coefficient assignment (bulk method). METHODS: The study population consisted of data of 10 subjects which had undergone PET-CT and PET-MRI. PET images were reconstructed with and without time-of-flight (TOF) using CT-based attenuation correction (CTAC) as reference. Comparison was done visually, using DICE coefficients, correlation, analyzing attenuation coefficients, and quantitative analysis of PET and bias atlas images. RESULTS: The median DICE coefficients were 0.824, 0.853, 0.849 for the bulk, cuboid and template method, respectively. The median attenuation coefficients were 0.0841 cm-1, 0.0876 cm-1, 0.0861 cm-1 and 0.0852 cm-1, for CTAC, bulk, cuboid and template method, respectively. The cuboid and template methods showed error of less than 2.5% in attenuation coefficients. An increased correlation to CTAC was shown with the cuboid and template methods. In the regional analysis, improvement in at least 49% and 80% of VOI was seen with non-TOF and TOF imaging. All methods showed errors less than 2.5% in non-TOF and less than 2% in TOF reconstructions. CONCLUSIONS: We evaluated two proof-of-concept methods for improving quantitative accuracy in PET/MRI imaging and showed that bias can be further reduced by inclusion of TOF. Largest improvements were seen in the regions of olfactory bulb, Heschl's gyri, lingual gyrus and cerebellar vermis. However, the overall effect of inclusion of the sinus region as separate class in MRAC to PET quantification in the brain was considered modest.


Assuntos
Imagem Multimodal , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos
14.
Curr Cardiol Rep ; 24(4): 307-316, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35171443

RESUMO

PURPOSE OF REVIEW: As machine learning-based artificial intelligence (AI) continues to revolutionize the way in which we analyze data, the field of nuclear cardiology provides fertile ground for the implementation of these complex analytics. This review summarizes and discusses the principles regarding nuclear cardiology techniques and AI, and the current evidence regarding its performance and contribution to the improvement of risk prediction in cardiovascular disease. There is a growing body of evidence on the experimentation with and implementation of machine learning-based AI on nuclear cardiology studies both concerning SPECT and PET technology for the improvement of risk-of-disease (classification of disease) and risk-of-events (prediction of adverse events) estimations. These publications still report objective divergence in methods either utilizing statistical machine learning approaches or deep learning with varying architectures, dataset sizes, and performance. Recent efforts have been placed into bringing standardization and quality to the experimentation and application of machine learning-based AI in cardiovascular imaging to generate standards in data harmonization and analysis through AI. Machine learning-based AI offers the possibility to improve risk evaluation in cardiovascular disease through its implementation on cardiac nuclear studies. AI in improving risk evaluation in nuclear cardiology. * Based on the 2019 ESC guidelines.


Assuntos
Cardiologia , Doenças Cardiovasculares , Inteligência Artificial , Cardiologia/métodos , Doenças Cardiovasculares/diagnóstico por imagem , Humanos , Aprendizado de Máquina
15.
Sci Rep ; 12(1): 2839, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181681

RESUMO

We implemented a two-dimensional convolutional neural network (CNN) for classification of polar maps extracted from Carimas (Turku PET Centre, Finland) software used for myocardial perfusion analysis. 138 polar maps from 15O-H2O stress perfusion study in JPEG format from patients classified as ischemic or non-ischemic based on finding obstructive coronary artery disease (CAD) on invasive coronary artery angiography were used. The CNN was evaluated against the clinical interpretation. The classification accuracy was evaluated with: accuracy (ACC), area under the receiver operating characteristic curve (AUC), F1 score (F1S), sensitivity (SEN), specificity (SPE) and precision (PRE). The CNN had a median ACC of 0.8261, AUC of 0.8058, F1S of 0.7647, SEN of 0.6500, SPE of 0.9615 and PRE of 0.9286. In comparison, clinical interpretation had ACC of 0.8696, AUC of 0.8558, F1S of 0.8333, SEN of 0.7500, SPE of 0.9615 and PRE of 0.9375. The CNN classified only 2 cases differently than the clinical interpretation. The clinical interpretation and CNN had similar accuracy in classifying false positives and true negatives. Classification of ischemia is feasible in 15O-H2O stress perfusion imaging using JPEG polar maps alone with a custom CNN and may be useful for the detection of obstructive CAD.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/normas , Isquemia/diagnóstico por imagem , Idoso , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/fisiopatologia , Feminino , Finlândia/epidemiologia , Coração/fisiopatologia , Humanos , Isquemia/diagnóstico , Isquemia/patologia , Masculino , Pessoa de Meia-Idade , Imagem de Perfusão do Miocárdio/classificação , Imagem de Perfusão do Miocárdio/normas , Redes Neurais de Computação , Software
16.
Am J Physiol Endocrinol Metab ; 322(1): E54-E62, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34806426

RESUMO

The cardiac benefits of gastrointestinal hormones have been of interest in recent years. The aim of this study was to explore the myocardial and renal effects of the gastrointestinal hormone secretin in the GUTBAT trial (NCT03290846). A placebo-controlled crossover study was conducted on 15 healthy males in fasting conditions, where subjects were blinded to the intervention. Myocardial glucose uptake was measured with [18F]2-fluoro-2-deoxy-d-glucose ([18F]FDG) positron emission tomography. Kidney function was measured with [18F]FDG renal clearance and estimated glomerular filtration rate (eGFR). Secretin increased myocardial glucose uptake compared with placebo (secretin vs. placebo, means ± SD, 15.5 ± 7.4 vs. 9.7 ± 4.9 µmol/100 g/min, 95% confidence interval (CI) [2.2, 9.4], P = 0.004). Secretin also increased [18F]FDG renal clearance (44.5 ± 5.4 vs. 39.5 ± 8.5 mL/min, 95%CI [1.9, 8.1], P = 0.004), and eGFR was significantly increased from baseline after secretin, compared with placebo (17.8 ± 9.8 vs. 6.0 ± 5.2 ΔmL/min/1.73 m2, 95%CI [6.0, 17.6], P = 0.001). Our results implicate that secretin increases heart work and renal filtration, making it an interesting drug candidate for future studies in heart and kidney failure.NEW & NOTEWORTHY Secretin increases myocardial glucose uptake compared with placebo, supporting a previously proposed inotropic effect. Secretin also increased renal filtration rate.


Assuntos
Coração/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Miocárdio/metabolismo , Secretina/administração & dosagem , Adolescente , Adulto , Idoso , Estudos Cross-Over , Jejum , Fluordesoxiglucose F18/metabolismo , Taxa de Filtração Glomerular , Glucose/metabolismo , Voluntários Saudáveis , Humanos , Infusões Intravenosas , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/metabolismo , Adulto Jovem
17.
J Nucl Cardiol ; 29(5): 2423-2433, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34476780

RESUMO

BACKGROUND: Dual-gating reduces respiratory and cardiac motion effects but increases noise. With motion correction, motion is minimized and image quality preserved. We applied motion correction to create end-diastolic respiratory motion corrected images from dual-gated images. METHODS: [18F]-fluorodeoxyglucose ([18F]-FDG) PET images of 13 subjects were reconstructed with 4 methods: non-gated, dual-gated, motion corrected, and motion corrected with 4D-CT (MoCo-4D). Image quality was evaluated using standardized uptake values, contrast ratio, signal-to-noise ratio, coefficient of variation, and contrast-to-noise ratio. Motion minimization was evaluated using myocardial wall thickness. RESULTS: MoCo-4D showed improvement for contrast ratio (2.83 vs 2.76), signal-to-noise ratio (27.5 vs 20.3) and contrast-to-noise ratio (14.5 vs 11.1) compared to dual-gating. The uptake difference between MoCo-4D and non-gated images was non-significant (P > .05) for the myocardium (2.06 vs 2.15 g/mL), but significant (P < .05) for the blood pool (.80 vs .86 g/mL). Non-gated images had the lowest coefficient of variation (27.3%), with significant increase for all other methods (31.6-32.5%). MoCo-4D showed smallest myocardial wall thickness (16.6 mm) with significant decrease compared to non-gated images (20.9 mm). CONCLUSIONS: End-diastolic respiratory motion correction and 4D-CT resulted in improved motion minimization and image quality over standard dual-gating.


Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada Quadridimensional , Humanos , Processamento de Imagem Assistida por Computador/métodos , Movimento (Física) , Tomografia por Emissão de Pósitrons/métodos , Razão Sinal-Ruído
18.
Sensors (Basel) ; 21(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207864

RESUMO

We present a novel method for estimating respiratory motion using inertial measurement units (IMUs) based on microelectromechanical systems (MEMS) technology. As an application of the method we consider the amplitude gating of positron emission tomography (PET) imaging, and compare the method against a clinically used respiration motion estimation technique. The presented method can be used to detect respiratory cycles and estimate their lengths with state-of-the-art accuracy when compared to other IMU-based methods, and is the first based on commercial MEMS devices, which can estimate quantitatively both the magnitude and the phase of respiratory motion from the abdomen and chest regions. For the considered test group consisting of eight subjects with acute myocardial infarction, our method achieved the absolute breathing rate error per minute of 0.44 ± 0.23 1/min, and the absolute amplitude error of 0.24 ± 0.09 cm, when compared to the clinically used respiratory motion estimation technique. The presented method could be used to simplify the logistics related to respiratory motion estimation in PET imaging studies, and also to enable multi-position motion measurements for advanced organ motion estimation.


Assuntos
Tomografia por Emissão de Pósitrons , Respiração , Abdome , Humanos , Processamento de Imagem Assistida por Computador , Movimento (Física) , Tórax
19.
Bioinformatics ; 37(24): 4810-4817, 2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34270690

RESUMO

MOTIVATION: The emergence of datasets with tens of thousands of features, such as high-throughput omics biomedical data, highlights the importance of reducing the feature space into a distilled subset that can truly capture the signal for research and industry by aiding in finding more effective biomarkers for the question in hand. A good feature set also facilitates building robust predictive models with improved interpretability and convergence of the applied method due to the smaller feature space. RESULTS: Here, we present a robust feature selection method named Stable Iterative Variable Selection (SIVS) and assess its performance over both omics and clinical data types. As a performance assessment metric, we compared the number and goodness of the selected feature using SIVS to those selected by Least Absolute Shrinkage and Selection Operator regression. The results suggested that the feature space selected by SIVS was, on average, 41% smaller, without having a negative effect on the model performance. A similar result was observed for comparison with Boruta and caret RFE. AVAILABILITY AND IMPLEMENTATION: The method is implemented as an R package under GNU General Public License v3.0 and is accessible via Comprehensive R Archive Network (CRAN) via https://cran.r-project.org/package=sivs. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Biomarcadores
20.
Nat Metab ; 3(6): 798-809, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34158656

RESUMO

Brown adipose tissue (BAT) thermogenesis is activated by feeding. Recently, we revealed a secretin-mediated gut-BAT-brain axis, which stimulates satiation in mice, but the purpose of meal-induced BAT activation in humans has been unclear. In this placebo-controlled, randomized crossover study, we investigated the effects of intravenous secretin on BAT metabolism (measured with [18F]FDG and [15O]H2O positron emission tomography) and appetite (measured with functional magnetic resonance imaging) in healthy, normal weight men (GUTBAT trial no. NCT03290846). Participants were blinded to the intervention. Secretin increased BAT glucose uptake (primary endpoint) compared to placebo by 57% (median (interquartile range, IQR), 0.82 (0.77) versus 0.59 (0.53) µmol per 100 g per min, 95% confidence interval (CI) (0.09, 0.89), P = 0.002, effect size r = 0.570), while BAT perfusion remained unchanged (mean (s.d.) 4.73 (1.82) versus 6.14 (3.05) ml per 100 g per min, 95%CI (-2.91, 0.07), P = 0.063, effect size d = -0.549) (n = 15). Whole body energy expenditure increased by 2% (P = 0.011) (n = 15). Secretin attenuated blood-oxygen level-dependent activity (primary endpoint) in brain reward circuits during food cue tasks (significance level false discovery rate corrected at P = 0.05) (n = 14). Caloric intake did not significantly change, but motivation to refeed after a meal was delayed by 39 min (P = 0.039) (n = 14). No adverse effects were detected. Here we show in humans that secretin activates BAT, reduces central responses to appetizing food and delays the motivation to refeed after a meal. This suggests that meal-induced, secretin-mediated BAT activation is relevant in the control of food intake in humans. As obesity is increasing worldwide, this appetite regulating axis offers new possibilities for clinical research in treating obesity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Saciação , Secretina/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Animais , Encéfalo/fisiologia , Ingestão de Energia , Metabolismo Energético , Comportamento Alimentar , Trato Gastrointestinal/fisiologia , Glucose/metabolismo , Humanos , Camundongos , Termogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...